Simultaneous Generation of Anionic and Neutral Palladium(II) Complexes from η^3 -Allylpalladium Chloride Dimer and Fluorinated β -enaminones

Sandrine Bouquillon,^[a] Jean-Philippe Bouillon,^[a] Louis Thomas,^[a] Richard Plantier-Royon,^[a] Frédéric Chanteau,^[a] Bernard Tinant,^[b] Françoise Hénin,^[a] Charles Portella,^[a] and Jacques Muzart*^[a]

Keywords: Allyl ligands / N,O ligands / Palladium / Perfluorinated ligands

Reactions between η^3 -allylpalladium chloride dimer, 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) and 1-amino-2-fluoro-1-perfluoroethyl-3-phenylprop-1-en-3-one or 1,12-diamino-2,11-difluoro-1,12-bis(perfluorobutyl)dodeca-1,11-diene-3,10-dione simultaneously provided two types of Pd^{II} complexes. One is an anionic η^3 -allylpalladium complex with

protonated DBU as counterion while the other is a neutral $\eta^3\text{-allyl}(\beta\text{-ketoiminato})\text{palladium complex}. A mechanism involving the amidine function of DBU in the formation of the two complexes is proposed.$

(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2003)

Chi et al. have recently reported η^3 -allyl(β -ketoiminato)-palladium(II) complexes which can serve as precursors for chemical vapor deposition of thin palladium films; these films are attractive for the manufacture of various electronic devices. In our studies on the synthesis and applications of polyfluorinated compounds, we developed an effective synthesis of β -enaminones 1 (Figure 1). Our long-standing interest in Pd-mediated chemistry ocupled with the observations of Chi et al. then prompted us to consider the synthesis of complexes 2a, 2b and 3 by treatment of 1a and 1b with $[(\eta^3$ -allyl)PdCl]₂ (4) (Figure 1).

Figure 1. Compounds 1-3

B. P. 1039, 51687 Reims Cedex 2, France Fax: (internat.) + 33-3-2691-3166

Unfortunately, the reaction of **1a** with **4** in the presence of aqueous NaOH, [1] MeONa^[1] or NEt₃ in CH₂Cl₂ produced a deposit of palladium and degradation compounds. This failure urged us to look for other conditions. No reaction was observed with Na₂CO₃ or K₂CO₃ as base in CH₂Cl₂. In contrast, the use of a stoichiometric amount of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) in the same solvent led to the complete consumption of a 1:1 mixture of **1a** and **4** in 24 h at room temperature. Evaporation of the solvent followed by addition of petroleum ether led to the formation of a precipitate. The removal of the mother liquors using a double-tipped needle allowed us to isolate the precipitate which was identified as the unexpected complex **5**. Subsequent evaporation of the mother liquors provided **2a** as an air-sensitive yellow oil (Scheme 1).

$$1a \xrightarrow{\begin{array}{c} 4 \text{ (1 equiv.)} \\ DBU \text{ (1 equiv.)} \\ \hline CH_2Cl_2 \\ r \text{ t, } 24 \text{ h} \end{array} } \xrightarrow{NC_4F_9} \xrightarrow{F} \xrightarrow{NC_4F_9} + \left[\left(\begin{array}{c} Pd \\ Cl \end{array} \right] \left[\begin{array}{c} H \\ N \\ Cl \end{array} \right] \xrightarrow{F} \xrightarrow{NC_4F_9} \xrightarrow$$

Scheme 1

The structure of **2a** was determined from its mass spectrum and analysis of its 1 H, 13 C and 19 F NMR spectra. The 1 H NMR spectrum indicated the presence of an allyl group, with the central hydrogen appearing at $\delta = 5.50$ ppm. The other four hydrogen atoms were nonequivalent, the peaks due to H_{syn} appearing at $\delta = 4.05$ and 3.57 ppm and those due to H_{anti} at $\delta = 3.14$ and about 2.60 ppm. The spectra also showed that a coordinated β -ketoimino group and a

[[]a] Unité Mixte de Recherche "Réactions Sélectives et Applications", CNRS – Université de Reims Champagne-Ardenne,

E-mail: jacques.muzart@univ-reims.fr

Unité CSTR – Cristallographie, Bâtiment Lavoisier,
1, Place Pasteur, 1348 Louvain-la-Neuve, Belgique
Fax: (internat.) + 32-10-472707
E-mail: tinant@chim.ucl.ac.be

Table 1. Characteristic resonances in the 13 C and 19 F NMR spectra (δ /ppm) for substrates and complexes

	1a	2a	3	1b	2b
C-N	130.6	$\begin{array}{c} 129.3^{[a]},\ 143.8^{[b]} \\ 138.5^{[a]},\ 140.6^{[b]} \\ 197.2^{[a]},\ 181.1^{[b]} \\ -166.7^{[a]},\ -177.6^{\ [b]} \end{array}$	145.4	133.5	148.0
C-F	139.7		140.1	140.7	140.2
C=O	197.4		181.0	186.4	172.3
F-C	-166.8		-177.7	-163.1	-175.6

[[]a] Uncoordinated β-enaminone. [b] Coordinated β-enaminone.

free β -enaminone group were present (Table 1), and that the ratio of allyl and β -ketoiminato units was 1:1.

The ^1H and ^{13}C NMR spectra of **5** indicated the presence of an allyl ligand and a protonated DBU molecule, in agreement with the mass spectrum. The exact molecular structure was determined by X-ray crystallography of suitable crystals obtained from recrystallization of the complex in chloroform. This confirmed that **5** is an ion pair consisting of an anionic dichloro(π -allyl)palladium(II) complex and a diazabicyclo[5.4.0]undec-7-enium cation (Figure 2). The Pd atom is coordinated in a square planar configuration. The distances to the mean square plane defined by the atoms Cl(1), Cl(2), C(20) and C(22) are as follows: Cl(1) +0.017, Cl(2) -0.017, C(20) -0.025, C(22) +0.025, Pd -0.089 and C(21) -0.655 Å. This shows that only the central carbon atom of the allyl group lies out of the mean square plane.

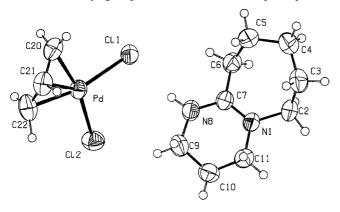


Figure 2. ORTEP diagram^[7] of 5

The Pd-C bond lengths in the complex cation are equal; their mean value (2.123 Å) is within the range found for other palladium complexes containing π -allyl ligands.^[4] As already observed for similar structures, the C-C bond lengths in the allylic group are not significantly different; we observed values of 1.410(5) and 1.389(5) A (i.e. with ΔC - C/ σ = 4.2). The trans influence of the π -allyl ligand explains the two long Pd-Cl bond lengths [2.402(1) and 2.370(1) A]. The observed difference between these two bond lengths is probably due to the asymmetry of the associated cation. The bicyclic skeleton of the cation adopted the following conformation. The six-membered ring is an envelope (E) with ring puckering parameters of Q = 0.451, $\theta = 51.9^{\circ}$ and $\varphi = 242.3^{\circ}$; [5] the plane of symmetry runs through the atoms C7 and C10. The seven-membered ring also has only one mirror plane as a symmetry element; this

passes through C4 and the midpoint of the N1–C7 bond. The four puckering parameters are Q(2) = 0.454, Q(3) = 0.648, $\varphi(2)$ = 234.85 and $\varphi(3)$ = 257.57°. [6] A hydrogen bond involving the ammonium hydrogen and one chlorine atom is observed. The geometry is as follows: N(8)–H(8)····Cl(1), N–H = 0.94(2) Å, H····Cl = 2.33(3) Å, N····Cl = 3.253(3) Å and N–H····Cl = 168(1)° [Cl(1): 0.5 + x, 1.5 – y, 1 – z].

Coordination of both the β -enaminone functions of 1a was achieved by increasing the quantities of both DBU and 4. The use of a 1a/DBU/4 ratio of 1:2:2 provided 3 (as an air-sensitive yellow oil) and 5. As expected from the above results, the reaction of 1b with stoichiometric amounts of DBU and 4 afforded an almost 1:1 mixture of complexes 2b and 5. The structures of 2b and 3 were established by NMR spectroscopy (Table 1) and mass spectrometry.

Regarding the mechanism of the formation of these complexes, we had at first thought that 2 might be formed from 1 by deprotonation with DBU followed by coordination of the resulting anion to palladium in a manner similar to that assumed by Chi et al.,[1] which would give also DBU·HCl. The reaction of the latter with 4 would afford 5 — similar anionic complexes have been obtained from \(\eta^3\)-allylpalladium halide complexes and either KCl^[8] or nBu₄NCl.^[4b] However, such a pathway was ruled out because the treatment of 4 with DBU·HCl did not provide 5. In contrast, 5 was obtained by the addition of DBU (2 equiv.) to 4 followed by HCl (2 equiv.). Monitoring this reaction by ¹H NMR spectroscopy showed that the coordination of DBU to palladium preceded the formation of 5. Since the use of NEt₃ in place of DBU did not permit the synthesis of 2a or 3 from 1a and 4, we suspect that the amidine functionality of DBU plays a key role, as depicted in Scheme 2 for the case of **2a**.

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} Cl \\ Pd \end{array} \end{array} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \begin{array}{c} Cl \\ Pd \end{array} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \begin{array}{c} Cl \\ Pd \end{array} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \begin{array}{c} Cl \\ Pd \end{array} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \begin{array}{c} Cl \\ Pd \end{array} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \begin{array}{c} Cl \\ Pd \end{array} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \begin{array}{c} Cl \\ Pd \end{array} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \begin{array}{c} Cl \\ Pd \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \begin{array}{c} Cl \\ Pd \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \begin{array}{c} Cl \\ Pd \end{array} \end{array} \begin{array}{c} \end{array} \begin{array}{c} \begin{array}{c} Cl \\ Pd \end{array} \end{array} \begin{array}{c} \end{array} \begin{array}{c} \begin{array}{c} Cl \\ Pd \end{array} \end{array} \begin{array}{c} \end{array} \begin{array}{c} \begin{array}{c} Cl \\ Pd \end{array} \end{array} \begin{array}{c} \end{array} \begin{array}{c} \begin{array}{c} Cl \\ Pd \end{array} \end{array} \begin{array}{c} \end{array} \begin{array}{c} \begin{array}{c} Cl \\ Pd \end{array} \end{array} \begin{array}{c} \end{array} \begin{array}{c} \begin{array}{c} Cl \\ Pd \end{array} \end{array} \begin{array}{c} \end{array} \begin{array}{c} \begin{array}{c} Cl \\ Pd \end{array} \end{array} \begin{array}{c} \end{array} \begin{array}{c} \begin{array}{c} Cl \\ Pd \end{array} \end{array} \begin{array}{c} \end{array} \begin{array}{c} \end{array} \begin{array}{c} \end{array} \begin{array}{c} Cl \\ Pd \end{array} \end{array} \begin{array}{c} \end{array} \begin{array}{c} \end{array} \begin{array}{c} \end{array} \begin{array}{c} Cl \\ Pd \end{array} \end{array} \begin{array}{c} \end{array} \begin{array}{c} \end{array} \begin{array}{c} \begin{array}{c} Cl \\ Pd \end{array} \end{array} \begin{array}{c} \end{array} \begin{array}{c} \end{array} \begin{array}{c} Cl \\ Pd \end{array} \end{array} \begin{array}{c} \end{array} \begin{array}{c} \end{array} \begin{array}{c} Cl \\ Pd \end{array} \end{array} \begin{array}{c} \end{array} \begin{array}{c} \end{array} \begin{array}{c} Cl \\ Pd \end{array} \end{array} \begin{array}{c} \end{array} \begin{array}{c} \end{array} \begin{array}{c} \end{array} \begin{array}{c} Cl \\ Pd \end{array} \end{array} \begin{array}{c} Cl \\ Pd \end{array} \begin{array}{c} \end{array} \begin{array}{c} Cl \\ Pd \end{array} \end{array} \begin{array}{c} \end{array} \begin{array}{c} Cl \\ Pd \end{array} \end{array} \begin{array}{c} Cl \\ Pd \end{array} \begin{array}{c} Pd \end{array} \begin{array}{c} Cl \\ Pd \end{array} \begin{array}{c}$$

Scheme 2

In conclusion, the simultaneous appearance of two η^3 -allylpalladium complexes (one neutral and the other anionic) in the same pot has been observed for the first time. It is of interest to note that anionic η^3 -allylpalladium complexes similar to 5 have been used as highly active catalysts for Suzuki and Heck reactions by the CIBA Company.^[9]

Experimental Section

General: Melting points are uncorrected. FT-IR spectra were recorded on a MIDAC Corporation Spectrafile IRTM apparatus. ¹H,

SHORT COMMUNICATION

¹³C and ¹⁹F spectra were recorded on a Bruker AC-250 spectrometer using CDCl₃ as the solvent. Tetramethylsilane, CHCl₃ and CFCl₃ were used as internal references for the ¹H, ¹³C and ¹⁹F NMR spectra respectively. MS data were obtained on a AUTOS-PEC (VG Instruments) apparatus at 70 eV in the electron impact mode. Elemental analyses were performed with a Perkin–Elmer CHN 2400 apparatus. All reactions were carried out under argon atmosphere. Solvents were freshly distilled before use (Et₂O over sodium/benzophenone, CH₂Cl₂ and petroleum ether over CaH₂). Complex 4 was prepared following a published procedure.^[10]

1a: C₆F₁₃I (11.24 g, 25.2 mmol) and MeLi (16.8 mL, solution 1.5 м in diethyl ether, 25.2 mmol) were added successively to a solution of 1,8-bis(trimethylsilyl)-1,8-octanedione^[11] (3.00 g, 10.5 mmol) in diethyl ether (85 mL) at -78 °C. The mixture was stirred at -78 °C for 30 min and then was allowed to warm to room temperature (1.5 h). After cooling to 0 °C, NH₃ was bubbled into the solution over 3 h. The mixture was diluted with diethyl ether (30 mL) and washed with water (20 mL). The aqueous phase was extracted with diethyl ether (5 \times 50 mL). The combined organic extracts were dried over MgSO₄, filtered and concentrated in vacuo. The crude mixture (estimated 80 % crude yield from the $^{19}\mathrm{F}\ NMR$ spectrum using PhCF₃ as an internal standard) was distilled using a kugelrohr apparatus (90-100 °C/0.05 mbar) and then recrystallized from petroleum ether to give 1a as a white solid (2.41 g, 33 %). M.p. 77–78 °C. IR (KBr, cm⁻¹): $\tilde{v} = 3497$, 3314, 2943, 1670, 1618, 1359. ¹H NMR (250 MHz, CDCl₃): $\delta = 6.2$ (br. s, 4 H), 2.61 (td, $^{3}J_{H,H} = 7.6 \text{ Hz}, ^{4}J_{H,F} = 3.1 \text{ Hz}, 4 \text{ H}), 1.7-1.5 \text{ (m, 4 H)}, 1.5-1.3$ (m, 4 H) ppm. 13 C NMR (69.2 MHz, CDCl₃): $\delta = 197.4$ (d, $^2J_{C,F} =$ 28.2 Hz, CO), 139.7 (d, ${}^{1}J_{C,F} = 239.4$ Hz, CF), 130.6 (td, ${}^{2}J_{C,F} =$ 23.5 Hz, 18.9, CN), 117.3 (qt, ${}^{1}J_{C,F}$ = 288.8 Hz, ${}^{2}J_{C,F}$ = 32.9 Hz, CF₃), 113.1 (tt, ${}^{1}J_{C,F} = 262.9 \text{ Hz}$, ${}^{2}J_{C,F} = 32.9 \text{ Hz}$, CF₂), 120–110 (m, 2 CF_2), 37.8 (s, CH_2), 28.9 (s, CH_2), 23.3 (s, CH_2) ppm. ^{19}F NMR (235.36 MHz, CDCl₃): $\delta = -166.8$ (m, 2F, CF), -126.6 (m, 4F, CF₂), -123.9 (m, 4F, CF₂), -117.3 (m, 4F, CF₂), -81.3 (t, $^{3}J_{\text{FF}} = 7.6 \text{ Hz}, 6\text{F}, \text{CF}_{3}) \text{ ppm. MS(EI): } m/z \text{ (\%)} = 696 \text{ (84) [M}^{+}],$ 676, 619, 372, 321 (100), 306, 279. $C_{20}H_{16}F_{20}N_2O_2$ (696.33): calcd. C 34.50, H 2.32, N 4.02; found C 34.08, H 2.04, N 3.69.

1b: NH₃ was bubbled through a solution of the fluorinated enone (300 mg, 1.05 mmol), (obtained from benzoylsilane and perfluorobutylmagnesium bromide as described previously^[12]) in anhydrous diethyl ether (20 mL) at 0 °C for 1 h. The mixture was diluted with diethyl ether (30 mL) and washed with a saturated solution of ammonium chloride. The aqueous layer was extracted with diethyl ether (3 \times 20 mL). The combined organic extracts were dried over MgSO₄, filtered and concentrated in vacuo. The crude mixture was purified by flash chromatography (eluant: petroleum ether/EtOAc, 90:10) to give **1b** as a yellow solid (285 mg, 96 %). M.p. 36-37 °C. IR (KBr, cm⁻¹): $\tilde{v} = 3405$, 3285, 3081, 1643, 1595, 1520, 1448, 1217, 735, 694. ¹H NMR (250 MHz, CDCl₃): $\delta = 7.89$ (d, ${}^{3}J_{H,H} =$ 7.6 Hz, 2 H) 7.60-7.44 (m, 3 H), 6.65 (br. s, 2 H) ppm. ¹³C NMR (69.2 MHz, CDCl₃): $\delta = 188.0$ (d, ${}^{2}J_{C.F} = 24.7$ Hz, CO), 140.2 (d, ${}^{1}J_{\text{C.F}} = 242.7 \text{ Hz}, \text{ CF}$), 136.3 (d, ${}^{2}J_{\text{C.F}} = 5.6 \text{ Hz}, \text{ C}_{\text{q}} \text{ arom.}$), 133.5 $(q, {}^{2}J_{C,F} = 24.1 \text{ Hz}, CN), 128.9 - 128.3 \text{ (CH arom.) ppm.} {}^{19}\text{F NMR}$ (235.36 MHz, CDCl₃): $\delta = -163.1$ (tq, ${}^{4}J_{FF} = 22.9$ Hz, ${}^{5}J_{FF} =$ 15.3 Hz, 1F, CF), -120.1 (d, ${}^{4}J_{FF} = 22.9$ Hz, 2F, CF₂), -84.0 (d, $^{5}J_{\text{FF}} = 15.3 \text{ Hz}, 3\text{F}, \text{CF}_{3}) \text{ ppm. MS (EI): } m/z \text{ (\%)} = 283 \text{ (35) [M}^{+}],$ 206, 178, 137, 105 (100). C₁₁H₇F₆NO (283.16): calcd. C 46.66, H 2.49, N 4.95; found C 46.51, H 2.43, N 4.81.

Synthesis of the Palladium Complexes. Standard Procedure: DBU (9.6 mg, 0.063 mmol) was added to a stirred solution of **1a** (44 mg, 0.063 mmol) in CH₂Cl₂ (10 mL). After 30 min, this solution was added dropwise to a solution of **4** (23 mg, 0.063 mmol) in CH₂Cl₂

(8 mL). The mixture was stirred for 24 h at room temperature. Evaporation of the solvent under reduced pressure afforded an oil. Addition of petroleum ether (20 mL) induced the precipitation of 5 (21 mg, 0.056 mmol, 90 %) as a brown-yellow powder which was isolated by filtration. Evaporation of the resulting solution afforded 2a (38 mg, 0.045 mmol, 72 %) as a yellow oil.

2a: IR (film, cm⁻¹): $\tilde{v} = 3236$, 3122, 2935, 2860, 1647, 1589, 1445, 1323, 1240, 1208, 749. ¹H NMR (250 MHz, CDCl₃): $\delta = 7.50$ (br. s, 1 H, NH), 6.30 (br. s, 2 H, NH₂), 5.50 (tt, ${}^{3}J = 12.5$ Hz and ${}^{3}J =$ 6.2 Hz, 1 H, H_{cent}), 4.05 (d, ${}^{3}J = 6.2$ Hz, 1 H, H_{syn}), 3.57 (d, ${}^{3}J =$ 6.2 Hz, 1 H, H_{svn}), 3.14 (d, ${}^{3}J = 12.5$ Hz, 1 H, H_{anti}), 2.70-2.48 [m, 5 H, H_{anti} , $CH_2(a)$ and $CH_2(a')$], 1.75–1.50 [m, H $CH_2(b)$ and $CH_2(b')$], 1.48–1.25 [m, 4 H, $CH_2(c)$ and $CH_2(c')$] ppm. ¹³C NMR (69.2 MHz, CDCl₃): $\delta = 197.2$ (d, ${}^{2}J_{C,F} = 27.9$ Hz, CO), 181.1 (d, $^{2}J_{C,F}$ = 26.8 Hz, CO), 143.8 (m, CN), 140.6 (d, $^{1}J_{C,F}$ = 201.4 Hz, CF), 138.5 (d, ${}^{1}J_{C,F}$ = 221.6 Hz, CF), 129.3 (m, CN), 120–110 (m, CF_2 , CF_3), 62.9 (s, CH_2 π -allyl), 50.6 (s, CH π -allyl), 37.9 (s, CH_2), 36.2 (s, CH₂), 29.2 (s, CH₂), 28.9 (s, CH₂), 26.1 (s, CH₂), 23.3 (s, CH₂) ppm. ¹⁹F NMR (235.36 MHz, CDCl₃): $\delta = -177.6$ (m, 1F, CF), -166.7 (m, 1F, CF), -126.6 (m, 4F, CF₂), -123.9 (m, 2F, CF₂), -122.6 (m, 2F, CF₂), -117.3 (m, 2F, CF₂), -114.7 (m, 2F, CF₂), -81.3 (t, ${}^{3}J_{FF} = 9.4$ Hz, 6F, CF₃) ppm. MS (EI): m/z (%) = 842 (13) [M⁺], 494, 321 (100), 147.

5: Orange solid. M.p. 131 °C. IR (KBr, cm⁻¹): $\tilde{v} = 3425$, 3300, 2935, 3130, 2857, 1642, 1205. ¹H NMR (CDCl₃, 250 MHz): $\delta = 10.25$ (br. s, 1 H, NH⁺), 5.42 (tt, ${}^{3}J = 12.5$ Hz and ${}^{3}J = 6.2$ Hz, 1 H, H_{cent}), 4.10 (d, ${}^{3}J = 6.2$ Hz, 2 H, H_{syn}), 3.70–3.50 [m, 6 H, CH₂(2), CH₂(9), CH₂(11)], 3.08 [m, 2 H, CH₂(6)], 3.00 (d, ${}^{3}J = 12.5$ Hz, 2 H, H_{anti}), 2.10 [quint, ${}^{3}J = 6.3$ Hz, 2 H, CH₂(10)], 1.98–1.55 [m, 6 H, CH₂(3), CH₂(4), CH₂(5)] ppm. ¹³C NMR (69.2 MHz, CDCl₃): $\delta = 164.0$, 118.2, 60.6, 61.0, 52.2, 49.5, 43.6, 35.2, 32.7, 31.7, 28.2, 23.9 ppm. MS (EI): m/z (%) = 372 (49) [M⁺], 152 (100).

The standard procedure, using DBU (13 mg, 0.085 mmol), **1b** (24 mg, 0.085 mmol) in CH_2Cl_2 (10 mL) and **4** (31 mg, 0.085 mmol) in CH_2Cl_2 (5 mL) led to **5** (25 mg, 0.067 mmol, 79 %) and **2b** (31 mg, 0.072 mmol, 85 %) as a yellow oil.

2b: ¹H NMR (CDCl₃, 250 MHz): δ = 7.90 (br. s, 1 H, NH), 7.75 (m, 2 H, Ph), 7.41 (m, 3 H, Ph), 5.51 (tt, ${}^{3}J$ = 12.5 Hz and ${}^{3}J$ = 6.2 Hz, 1 H, H_{cent}), 4.12 (d, ${}^{3}J$ = 6.2 Hz, 1 H, H_{syn}), 3.68 (d, ${}^{3}J$ = 6.2 Hz, 1 H, H_{syn}), 3.22 (d, ${}^{3}J$ = 12.5 Hz, 1 H, H_{anti}), 2.75 (d, ${}^{3}J$ = 12.5 Hz, 1 H, H_{anti}) ppm. ¹³C NMR (69.2 MHz, CDCl₃): δ = 172.3 (d, ${}^{2}J_{\rm C,F}$ = 26.0 Hz, CO), 148.0 (m, CN), 140.2 (d, ${}^{1}J_{\rm C,F}$ = 201.2 Hz, CF), 130.2–127.9 (C arom.), 114.2–111.3 (m, CF₂, CF₃), 63.5 (s, CH₂ π-allyl), 50.8 (s, CH π-allyl) ppm. ¹⁹F NMR (235.36 MHz, CDCl₃): δ = -175.6 (m, 1F, CF), -117.3 (m, 2F, CF₂), -82.5 (m, 3F, CF₃) ppm. MS (EI): m/z (%) = 429 (46) [M⁺], 282 (100), 147.

The standard procedure using DBU (21.9 mg, 0.144 mmol), **1a** (50 mg, 0.072 mmol) in CH_2Cl_2 (15 mL) and **4** (52.5 mg, 0.144 mmol) in CH_2Cl_2 (10 mL) led to **5** (38 mg, 0.102 mmol, 71 %) and **3** (45 mg, 0.045 mmol, 63 %).

3: IR (Film, cm⁻¹): $\tilde{v} = 3400$, 2935, 2861, 1590, 1495, 1418, 1351, 1237, 1136, 743. ¹H NMR (CDCl₃, 250 MHz): $\delta = 7.53$ (br. s, 1 H, NH), 5.57 (tt, ${}^3J = 12.5$ Hz and ${}^3J = 6.2$ Hz, 1 H, H_{cent}), 4.06 (d, ${}^3J = 6.2$ Hz, 1 H, H_{syn}), 3.59 (d, ${}^3J = 6.2$ Hz, 1 H, H_{syn}), 3.16 (d, ${}^3J = 12.5$ Hz, 1 H, H_{anti}), 2.68 (d, ${}^3J = 12.5$ Hz, 1 H, H_{anti}), 2.58 –2.50 [m, 4 H, CH₂(a) et CH₂(a')], 1.72 – 1.55 [m, 4 H, CH₂(b) et CH₂(b')], 1.48 – 1.30 [m, 4 H, CH₂(c) et CH₂(c')] ppm. ¹³C NMR (69.2 MHz, CDCl₃): $\delta = 181.1$ (d, ${}^2J_{\rm C,F} = 26.9$ Hz, CO), 140.1 (d, ${}^1J_{\rm C,F} = 205.8$ Hz, CF), 145.4 (td, ${}^2J_{\rm C,F} = 23.1$, 22.6 Hz, CN),

120–110 (m, CF₂, CF₃), 63.0 (s, CH₂ π-allyl), 50.6 (s, CH π-allyl), 36.2 (s, CH₂), 29.3 (s, CH₂), 26.0 (s, CH₂) ppm. ¹⁹F NMR (235.36 MHz, CDCl₃): $\delta = -177.7$ (m, 2F, CF), -126.6 (m, 4F, CF₂), -122.6 (m, 4F, CF₂), -114.8 (m, 4F, CF₂), -81.3 (t, $^3J_{\rm FF} = 9.9$ Hz, 6F, CF₃) ppm. MS (EI): m/z (%) = 990 (100) [M⁺] 949, 842(100), 800, 494.

X-ray Analysis of 5: The recrystallization leading to suitable crystals for X-ray analysis took place in CDCl₃ solution in the NMR tube. After slow and partial evaporation of the solvent, the crystals were collected and washed with small amounts of diethyl ether and dried under a gentle flow of argon. The crystal was glued to a thin glass fiber and placed on the goniometer head of a MAR345 image plate detector equipped with Mo- K_{α} graphite monochromatized radiation. 60 Images at a crystal to detector distance of 130 mm and with $\Delta \Phi = 3^{\circ}$ were collected giving a total of 9782 reflections of which 3027 were independent ($R_{\rm int} = 0.060$). The structure was solved by the Patterson heavy atom method and refined by fullmatrix least-squares on $F^{2,[13]}$ The hydrogen atoms of the cation and ammonium hydrogen were located from a difference Fourier synthesis. All the other hydrogen atoms were placed at a calculated geometry and allowed to ride on the parent atom during subsequent cycles of least-squares refinement. Non hydrogen atoms were refined using anisotropic parameters for thermal motion. All the hydrogen atoms were refined with a common isotropic temperature factor ($V = 0.078 \text{ Å}^2$). The details of crystal data and parameters of the refinement are given in Table 1. CCDC-220981 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/ retrieving.html [or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; Fax: (internat.) + 44-1223-336-033; E-mail: deposit@ccdc.cam.ac.uk].

Acknowledgments

We thank the Ministère de la Recherche (grant to F. C.), CNRS and Université de Reims Champagne-Ardenne (BQR, 1999) for supporting this research and the Engelhard Company for generous gifts of palladium salts. B. T. thanks the F.N.R.S. (Belgium) for financial support.

- [1] Y.-L. Tung, W.-C. Tseng, C.-Y. Lee, P.-F. Hsu, Y. Chi, S.-M. Peng, G.-H. Lee, *Organometallics* **1999**, *18*, 864–869.
- [2] [2a] P. Doussot, C. Portella, J. Org. Chem. 1993, 58, 6675-6680.
 [2b] B. Dondy, P. Doussot, C. Portella, Tetrahedron Lett. 1994, 35, 409-412.
 [2c] B. Dondy, P. Doussot, M. Iznaden, M. Muzard, C. Portella, Tetrahedron Lett. 1994, 35, 4357-4360.
 [2d] J.-P. Bouillon, B. Didier, B. Dondy, P. Doussot, R. Plantier-Royon, C. Portella, Eur. J. Org. Chem. 2001, 187-192.
- [3] [3a] J. Muzart, J.-P. Pète, J. Chem. Soc., Chem. Commun. 1980, 257-258. [3b] S. Bouquillon, F. Hénin, J. Muzart, Organometallics 2000, 19, 1434-1437. [3c] B. Ganchegui, S. Bouquillon, F. Hénin, J. Muzart, Tetrahedron Lett. 2002, 43, 6641-6644. [3d] M. Moreno-Mañas, R. Pleixats, J. Spengler, C. Chevrin, B. Estrine, S. Bouquillon, F. Hénin, J. Muzart, A. Pla-Quintana, A. Roglans, Eur. J. Org. Chem. 2003, 274-283.
- [4] [4a] Y. Kitano, T. Kajimoto, M. Kashiwagi, Y. Kinoshita, J. Organomet. Chem. 1971, 33, 123-129. [4b] L. S. Hegedus, B. Åkermark, D. J. Olsen, O. P. Anderson, K. Zetterberg, J. Am. Chem. Soc. 1982, 104, 697-704. [4c] G. De Munno, G. Bruno, E. Rotondo, G. Giordano, S. Lo Schiavo, P. Piraino, G. Tresoldi, Inorg. Chim. Acta 1993, 208, 67-75.
- [5] [5a] D. Cremer, J. A. Pople, J. Am. Chem. Soc. 1975, 97, 1354–1358. [5b] J. C. A. Boyens, J. Cryst. Mol. Struct. 1978, 8, 317–320.
- [6] I. K. Boessenkool, J. C. A. Boyens, J. Cryst. Mol. Struct. 1980, 10, 11–18.
- [7] Spek A. L. PLUTON Program for molecular graphic, 1992, University of Utrecht, Netherlands.
- [8] R. J. Goodfellow, L. M. Venanzi, J. Chem. Soc. A 1966, 784-785.
- [9] M. Tinkl, A. Hafner, Chem. Abstr. 1999, 131, 243063; PCT Int. Appl. WO 99/47474, 1999.
- [10] [10a] M. Sakakibara, Y. Takahashi, S. Sakai, Y. Ishii, J. Chem. Soc., Chem. Commun. 1969, 396-397. [10b] B. Åkermark, A. Åkermark, L. S. Hegedus, K. Zetterberg, J. Am. Chem. Soc. 1981, 103, 3037-3040.
- [11] J.-P. Bouillon, C. Portella, Eur. J. Org. Chem. 1999, 1571-1580.
- ^[12] B. Dondy, C. Portella, *J. Org. Chem.* **1993**, *58*, 6671–6674.
- [13] Sheldrick G. M. SHELXL-97. Program for the Solution and the Refinement of Crystal Structures, University of Göttingen, Germany. 1997.

Received September 3, 2003